APPROXIMATE BI-HOMOMORPHISMS AND BI-DERIVATIONS IN C*-TERNARY ALGEBRAS

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homomorphisms and Derivations in C-Ternary Algebras

and Applied Analysis 3 in the middle variable, and associative in the sense that x, y, z,w, v x, w, z, y , v x, y, z , w, v , and satisfies ‖ x, y, z ‖ ≤ ‖x‖ · ‖y‖ · ‖z‖ and ‖ x, x, x ‖ ‖x‖ see 45, 47 . Every left Hilbert C∗-module is a C∗-ternary algebra via the ternary product x, y, z : 〈x, y〉z. If a C∗-ternary algebra A, ·, ·, · has an identity, that is, an element e ∈ A such that x x, e, e ...

متن کامل

Approximate solutions of homomorphisms and derivations of the generalized Cauchy-Jensen functional equation in $C^*$-ternary algebras

In this paper, we prove Hyers-Ulam-Rassias stability of $C^*$-ternary algebra homomorphism for the following generalized Cauchy-Jensen equation $$eta mu fleft(frac{x+y}{eta}+zright) = f(mu x) + f(mu y) +eta f(mu z)$$ for all $mu in mathbb{S}:= { lambda in mathbb{C} : |lambda | =1}$ and for any fixed positive integer $eta geq 2$ on $C^*$-ternary algebras by using fixed poind alternat...

متن کامل

Approximate C-ternary Ring Homomorphisms

In this paper, we establish the generalized Hyers–Ulam–Rassias stability of C-ternary ring homomorphisms associated to the Trif functional equation d · C d−2f( x1 + · · ·+ xd d ) + C d−2 d ∑

متن کامل

Approximate *-derivations and approximate quadratic *-derivations on C*-algebras

* Correspondence: baak@hanyang. ac.kr Department of Mathematics, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea Full list of author information is available at the end of the article Abstract In this paper, we prove the stability of *-derivations and of quadratic *-derivations on Banach *-algebras. We moreover prove the superstability of *-derivations and of q...

متن کامل

Research Article Homomorphisms and Derivations in C* -Algebras

Ulam [1] gave a talk before theMathematics Club of the University ofWisconsin in which he discussed a number of unsolved problems. Among these was the following question concerning the stability of homomorphisms. We are given a group G and a metric group G′ with metric ρ(·,·). Given > 0, does there exist a δ > 0 such that if f :G→G′ satisfies ρ( f (xy), f (x) f (y)) < δ for all x, y ∈G, then a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Korean Mathematical Society

سال: 2010

ISSN: 1015-8634

DOI: 10.4134/bkms.2010.47.1.195